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In this work, we introduce a new method for tracking the interfaces among several immis-
cible fluids. To advance the solution in time, we use a MUSCL-type scheme which couples a
partial volume representation with a level set one to build the numerical fluxes. In partic-
ular we show the positiveness and conservation properties of this method. Some numerical
tests are given to demonstrate the conservativeness and the performances of our method.
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1. Introduction

In this paper, we describe a multi-fluid tracking method where the fluids are transported by a given velocity field. This
method can be used on both structured and unstructured meshes, it has good conservation properties and it provides a quick
and smooth reconstruction of the interfaces. Finally, it is robust with respect to topological changes.

Many techniques regarding the two-fluid problem are reported in the literature but they cannot often be extended readily
to a multi-fluid problem and, moreover, they do not match our requirements listed above. Tracking methods can be roughly
subdivided into two categories: the Lagrangian and Eulerian ones. The former track the interfaces explicitly, while the latter
reconstruct them with a post-processing procedure.

Among the many Lagrangian tracking algorithms (see, for instance, [5,16,22,32]), some move all the nodes of the volume
mesh. Some others, on the contrary, track just the interface points and reconstruct the mesh in the interior at every time
step, or whenever necessary. The Lagrangian approach presents some difficulties, particularly in three-dimensional compu-
tations, such as the treatment of possible, physical or numerically induced, topological changes. Furthermore, sophisticated
adaption algorithms have to be used to preserve the mesh quality and, if a topological change occurs, complex topology cor-
rection algorithms are needed (see, for instance, the one in [18]). Moreover it is almost impossible to prove the algorithm
robustness with respect to all topological changes that may happen in complex and realistic 3D situations. Some works,
for example [26,31], have been proposed to tackle the topological change problem. These approaches adopt a fixed back-
ground grid for the solution of a geometry regularization equation. However, they apply only to two-fluid simulations
and are not mass-preserving.

Though the Lagrangian methods have an explicit and immediate representation of the interfaces (see [12,16,22,32]), they
are not conservative. There are works, like [17], which present procedures to enforce mass conservation, but fail to be robust
for topological changes.
. All rights reserved.
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The complexity of Lagrangian methods triggered the development of the Eulerian implicit tracking methods; an overview
can be found in [6,13]. Let us remind the most effective methods, namely, the volume of fluid (VOF) and the level-set (LS).
Some mixed Eulerian–Lagrangian methods exist, such as the ALE methods [8] or the particle methods [19], but often they are
not robust with respect to topological changes. The LS [9,19,25,27,28] is a robust method and it is easy to code. But, in many
cases, it does not fit the multi-fluid framework and, in general, it does not conserve the mass. A few papers are devoted to the
multi-fluid simulation (see, for instance, [11,33,34]) however, the first two works are specifically designed for curvature-dri-
ven flows and they cannot be easily adapted to an advective-driven case, where the velocity field is given. In [34] a nested LS
structure is used. However, though effective, this technique is not mass conservative.

Many works are devoted to fix the LS non conservativeness, like [21,29], yet all of them consider only the case of two
fluids. The mass conservation issue can be partially solved by refining the grid adaptively, as pointed out in [1,2].

VOF methods are mass conservative by construction and relatively robust, although they are usually designed to track
only two fluids (see, for instance, [23]) and furthermore they have, in general, an irregular reconstruction of the interfaces.
Moreover, VOF methods often require a structured grid. Interface reconstruction, using VOF methods, is a major topic and
many works, such as [3,4] are devoted to it.

To overcome the drawbacks of LS and VOF methods many coupled techniques have been developed. For instance in [10] a
coupled LS-particle approach is used. Though effective and nearly conservative, this scheme does not seem to be readily
applicable to the multi-fluid case. In [21,29,30] some coupled LS–VOF methods have been developed. These schemes are de-
signed to combine the best features of the two methods. However, these coupling schemes usually rely on VOF structured
grids and they cannot be easily extended to unstructured grids. One of the most applicable techniques for multi-fluid sim-
ulations is the partial volume tracking method (VT) which consists in discretizing, with high order schemes, the volume
transport equation. This approach is very similar to the VOF one, however there is no explicit reconstruction of the interfaces.
The VOF can be seen as a sub-case of the VT, and in many cases the VOF method itself is called VT method (see [6]). This
approach has a moderate success, since the discontinuous initial solutions are quickly diffused even if high resolution meth-
ods are used.

In this work, we are interested in exploiting both the partial volume representation and the level set representation. A
simple coupling strategy is used: the level set is defined as the first degree interpolation on the dual grid of the partial vol-
umes. This coupling enables, with the solution of only one set of partial differential equations, to access to both the VT and LS
representations. Our LS functions are usually steeper than the signed distance functions and a proper finite volume scheme is
provided to cope with this kind of steep LS functions.

Let us now briefly review the structure of the paper: in Section 2 we give an outline of our method, in Sections 3 and 4 we
analyze the method and we outline some of its properties. In Section 5 we give some details of the numerical techniques
adopted and we also analyze theoretically the method performances. In Section 6 we introduce a proper reconstruction algo-
rithm for the level set function and in the last section we describe some numerical results and we show our method perfor-
mances both in the two-fluid case and in the multi-fluid case.

2. The method

We consider a domain X � Rd, where d = 1, 2, 3, with a regular boundary @X; this domain is filled with ns immiscible fluid
species, such that every subdomain Xi �X, corresponding to a species, does not overlap with the others, i.e., Xi \Xj = 0 if
i – j and X ¼

Sns
i¼0Xi, see Fig. 1. The subdomains Xi depend on time, i.e., Xi = Xi(t), since they are advected by a time depen-

dent velocity field ~uðt;~XÞ, where ~X 2 XðtÞ and t P 0, whose trace on @X has zero normal component, i.e., ~u �~n ¼ 0 on @X,
being ~n the boundary normal unit vector. Other boundary conditions can be considered, however, for the sake of simplicity
only the free slip condition is adopted in this work. We also assume that~u is sufficiently regular, in particular we assume, at
each time t,~uðt;~XÞ 2 H1ðXÞ. For i = 0, . . .,ns we define k0

i 2 L2ðXÞ as the characteristic function of subdomain Xi at initial time,
i.e.
k0
i ð~XÞ ¼

1; if ~X 2 XiðtÞ;
0; if ~X R XiðtÞ:

(

Fig. 1. Domain X and its subdomains Xi.
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Therefore, the following relation holds:
Pns

i¼1k
0
i ¼ 1 almost everywhere in X. The VT equation for a given vector field ~u is
Fig. 2.
commo
@ki
@t þ ~r � ðki~uÞ � kið~r �~uÞ ¼ 0; t > 0; i ¼ 1; . . . ;ns;

ki ¼ k0
i ; t ¼ 0;

(
ð1Þ
where kiðt; �Þ 2 L2
X is a weak solution of (1). This equation is equivalent to the transport equation
@ki

@t
þ~u � ~rki ¼ 0: ð2Þ
We have considered Eq. (1) instead of (2) because its corresponding discrete form is simpler to analyze.
Problem (1) has some properties we wish to recall.

Proposition 1. If the initial condition satisfies
Pns

i¼1k0
i ¼ 1 almost everywhere in X, then

Pns
i¼1ki ¼ 1 almost everywhere in X for

"t > 0.
Proof. We can proceed formally by summing up the ith equations in (1), obtaining
@

@t

Xns

i¼1

ki

 !
þ ~r � ~u

Xns

i¼1

ki

 !
� ð~r �~uÞ

Xns

i¼1

ki ¼ 0: ð3Þ
By inspection it can be verified that
Pns

i¼1ki ¼ 1; 8t P 0, is a solution of (3) and that it satisfies the initial condition. Since (3)
is a linear advection equation it has a unique solution. h
Proposition 2. If the initial condition satisfies 0 6 k0
i 6 1 almost everywhere in X and the velocity field ~uðt;~XÞ is Lipschitz con-

tinuous uniformly on t for ~X 2 X, then 0 6 ki 6 1, "t > 0, almost everywhere in X.
Proof. It is a standard characteristic theory argument, see [14]. h

Let us now consider the definition of a level set description of the same subdomains. We define /i : Rþ �X! R, with
/iðt; �Þ 2 C0ðXÞ 8t > 0, i = 1, . . .,ns, some level set functions such that XiðtÞ ¼ f~X 2 X : /iðt;~XÞ > 1

2g and consequently
@XiðtÞ ¼ f~X 2 X : /iðt;~XÞ ¼ 1

2g. This particular value of the set has been chosen because it will be useful when we find an anal-
ogy between the discrete forms of LS and the VT equations. We can write the following evolution equation for each /i
@/i
@t þ ~r � ð/i~uÞ � /ið~r �~uÞ ¼ 0; t > 0;

/i ¼ /0
i ; t ¼ 0;

(
ð4Þ
by which, at all times, ki ¼ Hð/i � 1
2Þ, where
Hð.Þ ¼
1 if . > 0;
0 otherwise

�

is the Heaviside function and /0

i is the initial condition. In other words, at the continuous level, Eqs. (1) and (4) are two equiv-
alent ways to describe the interface motion. However, in the discrete setting, we will use two different spaces for ki and /i.

We now introduce the discrete form of the equations: let TD be a conforming (structured or unstructured) grid on X
made of either simplex or quad elements. The grid TD has ne elements indicated by er, r = 1, . . .,ne and np nodes denoted
by ~xk; k ¼ 1; . . . ;np. Let D be the maximum diameter of the elements. Consider the dual mesh made of nc = np cells
sk, k = 1, . . .,nc, centered on the nodes ~xk, and built by connecting the barycenters of the elements to the barycenters of
the faces, see Fig. 2. Let Ik ¼ fkj; j ¼ 1; . . . ; jIkjg be the set of the indexes of the cells surrounding cell sk, and let
fskj
g; j ¼ 1; . . . ; jIkj, be the set of cells surrounding sk. The common surface between sk and skj

is indicated by lj
k. We also

indicate by i the index such that, given the indexes k and j; i : likj
¼ lj

k. In other words, every interface between the cells sk

and skj
can be identified by two indices j and i, respectively, depending on whether it is a face of sk or skj

: see Fig. 2.
An example of unstructured (a), and structured (b), two-dimensional meshes with the dual meshes (dotted). The jth neighboring cell of sk is skj
, the

n interface between sk and skj
is called lj

k . There exists a i such that the ith interface of skj
is equal to lj

k .
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For the sake of clarity, in this work we will adopt the following convention: the index i always refers to the fluid species, k
to the cell related quantities, j to the interface related values, r to the elements, and n to the time steps. Let us introduce the
semi-discrete counterparts of ki and /i denoted by ki;DðtÞ 2 V0 and /i;DðtÞ 2 V1, respectively, where V0 ¼ fk 2 L2ðXÞ :

kjsk
2 P0ðskÞ; k ¼ 1; . . . ;ncg; V1 ¼ f/ 2 C0ðXÞ : /jer

2 Q
1ðerÞ; r ¼ 0; . . . ;ncg in the case of a rectangular grid and

V1 ¼ f/ 2 C0ðXÞ : /jer
2 P1ðerÞ; r ¼ 0; . . . ;ncg on a simplicial mesh. Here PsðXÞ denotes the space of polynomials of order

at most s on X and Q
sðXÞ is the space of the tensor product of polynomials of order at most s. We consider the canonical

basis f#0
kg for V0 and f#1

kg for V1, therefore
ki;Dðt;~XÞ ¼
Xnp

k¼1

ki;kðtÞ#0
kð~XÞ; /i;Dðt;~XÞ ¼

Xnc

k¼0

/i;kðtÞ#1
kð~XÞ; ð5Þ
where ki,k is the mean volume fraction of the species i in the cell sk (we will denote, from now on, ki,k as the composition) and
/i,k are the values of the discrete level set function at node~xk.

We introduce a rather simple coupling between LS and VT equations, by choosing the level set function as the piecewise
linear interpolation from the dual mesh to the original one, i.e., /i;D ¼ I1

Dki;D where I1
D : V0 ! V1 is the linear interpolation

operator on the TD grid. In other terms, we set
/i;k ¼ ki;k k ¼ 1; . . . ;np; i ¼ 1; . . . ;ns: ð6Þ
The evolution of the interfaces is carried out through the advancement of ki,D by a discrete version of (1), using the informa-
tion carried by /i,D to build the numerical fluxes. Finally, we reconstruct the level set as a post-processing. Therefore, with
the solution of only a set of PDE’s, we get both the partial volume and the level set representations. This choice implies an
error concerning the representation of the initial conditions as, in general, given an initial condition ki;Dð0;~XÞ then
ki;Dð0;~XÞ – Hð/i;Dð0;~XÞ � 1

2Þ. This difference can be bounded as we state in the following:

Proposition 3. Let us assume that k 2 V0 and has the image in the set {1, 0}. Moreover, let us consider / ¼ I1
Dk. Then
Z

X
k� H /� 1

2

� �� �
¼ OðDÞ:
Proof. Let Sb ¼ fk 2 ½1;nc� :
R
sk
ðk� Hð/� 1

2ÞÞ – 0g. Since this set is also the set of the cells that are crossed by the boundary of
Xi, its cardinality is O(D1�d). Moreover

R
sk
ðk� Hð/� 1

2ÞÞ ¼ OðDdÞ 8k 2 Sb, therefore
R

Xðk� Hð/� 1
2ÞÞ ¼ OðD1�dÞOðDdÞ and we

obtain the thesis. h

We use a finite volume method together with an explicit Euler scheme to advance ki,D
knþ1
i;k ¼ 1þ Dn

D;k

� �
kn

i;k �
XjIC

k
j

j¼1

Fn;j
i;k ; ð7Þ
where kn
i;k ¼ ki;kðtnÞ and t0, t1, . . ., tn,tn+1, . . . is a sequence of time steps with tn+1 = tn + Dtn. The quantity Dn

D;k ¼
PjIC

k
j

j¼1m
n;j
k is the

dimensionless discrete divergence factor of element sk (i.e., Dn
D;k is the discrete approximation of Dtn

jsk j
H
@sk
~u �~n ) and
mn;j
k ¼

Dtn

jskj

Z
lj
k

~u �~n
is a dimensionless quantity which can be considered as the interface Courant number. Finally,
Fn;j
i;k ¼ mn;j

k Uðbkn;j
i;k ;
bkn;i

i;kj
Þ ð8Þ
are the interface fluxes, where Uðbkn;j
i;k ;
bkn;i

i;kj
Þ is the upwind function
Uðbkn;j
i;k ;
bkn;i

i;kj
Þ ¼

bkn;j
i;k ifmn;j

k P 0;bkn;i
i;kj

ifmn;j
k < 0;

8<: ð9Þ
where bkn;j
i;k ;

bkn;i
i;kj

are suitable approximations of the composition kn
i;D on the faces lj

k and likj
, respectively: see Fig. 3.

The stability of method (7) entails the following time step restriction:
Dtn
6
jskj
jIkj

1
j
R

lj
k

~u �~nj k ¼ 1; . . . ;nc; j ¼ 1; . . . ; jIkj; ð10Þ
that is
jmn;j
k j 6

1
jIkj

k ¼ 1; . . . ;nc; j ¼ 1; . . . ; jIkj: ð11Þ



Fig. 3. An example of the boundary compositions bkn;j
i;k and bkn;i

i;kj
on an unstructured (a), and structured (b) grid. The first one is an approximation of the

composition from inside sk while the other one is an approximation from the neighboring cell skj
.
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To define bkn;j
i;k we have used the following relation
bkn;j

i;k ¼ kn
i;k þ dkn;j

i;k ; ð12Þ
where dkn;j
i;k is determined by defining the average of the set on the interfaces /n;j

i;k ¼ 1
jlj

k
j

R
lj
k
/i;Dðtn;~XÞ and solving the following

constrained minimization problem
min
dkn;j

i;k

1
2

Pns

i¼1
ðkn

i;k � /n;j
i;k þ dkn;j

i;kÞ
2
;

Pns

i¼1
dkn;j

i;k ¼ 0;

dkn;j
i;k;min 6 dkn;j

i;k 6 dkn;j
i;k;max;

8>>>>>><>>>>>>:
ð13Þ
where
dkn;j
i;k;min ¼ �kn

i;k;

dkn;j
i;k;max ¼min

ð1þDn
D;kÞ�mn;j

k
jJk j

mn;j
k
jJk j

kn
i;k;1� kn

i;k

� �
:

8><>: ð14Þ
In other words, the interface states bkn;j
i;k are best fit approximations of the local level set functions. Problem (13) has to be

solved for all k = 1, . . .,nc and for all j 2 Jk, where Jk ¼ fj 2 ½1; jIC
j j� : m

n;j
k P 0g is the set of the indices of the outflow faces lj

k

of the kth cell. And therefore the upwind function (8) selects only the upwind state, we can avoid to compute the downwind
flux thus reducing the computational burden.

3. Analysis of the method
Proposition 4. If 0 6 kn
i;D 6 1 and if mn;j

k P 0 (i.e. we are considering an outflow face), then problem (13) has a unique solution.
Proof. We point out that the bound 0 6 kn
i;D 6 1will be proved shortly and we will consider only an outflow face since (13) is

solved only for the faces characterized by mn;j
k P 0.

First of all we will show that the feasible region for the dkn;j
i;k , defined by the constraints in problem (13), is a convex,

nonempty subset of Rns . Since the first of (13) is a convex minimization problem, we can conclude (see [20]) that the problem
has a unique solution.

As we have stated previously, the feasible region is nonempty, in fact, we can bound all the terms in (14):
dkn;j
i;k;min ¼ �kn

i;k 6 0; ð15Þ
and
1� kn
i;k P 0: ð16Þ
Then using (11)
Dn
D;k ¼

XjIk j

j¼1

mn;j
k P

X
jRJk

mn;j
k P �

X
jRJk

1
jIkj
¼ � jIkj � jJkj

jIkj
:
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Finally, we bound the second term in the second equation of (14):
ð1þ Dn
D;kÞ � mn;j

k jJkj
mn;j

k jJkj
kn

i;k P
1� jIk j�jJk j

jIk j
� mn;j

k jJkj
mn;j

k jJkj
kn

i;k ¼
jJkj � mn;j

k jJkjjIkj
mn;j

k jJkjjIkj
kn

i;k ¼
1� mn;j

k jIkj
mn;j

k jIkj
kn

i;k:
Then, from (11), we obtain that
ð1þ Dn
D;kÞ � mn;j

k jJkj
mn;j

k jJkj
kn

i;k P 0 ð17Þ
and consequently using (16) and (17) we have dkn;j
i;k;max P 0. Therefore, considering (15), we get that the feasible set is not

empty.
Let us now prove the convexity of the feasible region. Consider two vectors di, fi with i = 1, . . .,ns belonging to the feasible

region. Let adi + (1 � a)fi, with a 2 [0,1], be a convex combination of the vectors. We have to show that the linear
combination belongs to the feasible region. We have
Pns

i¼1
ðadi þ ð1� aÞfiÞ ¼ a

Pns

i¼1
di þ ð1� aÞ

Pns

i¼1
fi ¼ 0;

ðadi þ ð1� aÞfiÞ 6 adkn;j
i;k;max þ ð1� aÞdkn;j

i;k;max ¼ dkn;j
i;k;max;

ðadi þ ð1� aÞfiÞP adkn;j
i;k;min þ ð1� aÞdkn;j

i;k;min ¼ dkn;j
i;k;min:

8>>>><>>>>:

This completes the proof. h
Proposition 5. The method defined by (12)–(14) is positive, i.e. kn
i;k P 0; 8n; i ¼ 1; . . . ;ns; k ¼ 1; . . . ;nc.
Proof. Let us proceed by induction. We suppose kn
i;k P 0, then using (7) we get
knþ1
i;k ¼ 1þ Dn

D;k

� �
kn

i;k �
XjIC

k
j

j¼1

Fn;j
i;k P 1þ Dn

D;k

� �
kn

i;k �
X
j2Jk

Fn;j
i;k ;
and combining it with Eqs. (8) and (12) we obtain
knþ1
i;k P 1þ Dn

D;k

� �
kn

i;k �
X
j2Jk

mn;j
k kn

i;k þ dkn;j
i;k

� �
¼ 1þ Dn

D;k

� �
kn

i;k � kn
i;k

X
j2Jk

mn;j
k �

X
j2Jk

mn;j
k dkn;j

i;k :
Finally, using (14), we have
knþ1
i;k P 1þ Dn

D;k

� �
kn

i;k � kn
i;k

X
j2Jk

mn;j
k �

X
j2Jk

ð1þ Dn
D;kÞ � mn;j

k jJkj
jJkj

kn
i;k ¼ 1þ Dn

D;k

� �
kn

i;k � kn
i;k

X
j2Jk

mn;j
k � ð1þ Dn

D;kÞk
n
i;k

þ kn
i;k

X
j2Jk

mn;j
k ¼ 0:
And, since k0
i;D P 0, the proof follows. h
Proposition 6. The sum of partial volumes, on every cell at every time step, equals one
Xns

i¼1

kn
i;k ¼ 1 8n; k ¼ 1; . . . ;nc: ð18Þ
Analogously the sum of the level set functions is everywhere equal to one
Xns

i¼1

/n
i;D ¼ 1 8n:
Proof. Let us use the induction principle. At n = 0, condition (18) is satisfied and we assume that the condition is satisfied at
time tn. We have
Xns

i¼1

knþ1
i;k ¼

Xns

i¼1

1þ Dn
D;k

� �
kn

i;k �
XjIC

k
j

j¼1

Fn;j
i;k

24 35 ¼ 1þ Dn
D;k

� �
�
Xns

i¼1

XjIC
k
j

j¼1

mn;j
k Uðbkn;j

i;k ;
bkn;i

i;kj
Þ: ð19Þ
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From the second equation of (7) and from the inductive hypothesis we have
Xns

i¼1

bkn;j
i;k ¼

Xns

i¼1

kn
i;k þ dkn

i;k ¼ 1;
and therefore
Xns

i¼1

Uðbkn;j
i;k ;
bkn;i

i;kj
Þ ¼ 1: ð20Þ
Then, plugging (20) into (19), we get
Xns

i¼1

knþ1
i;k ¼ 1þ Dn

D;k

� �
�
XjIC

k
j

j¼1

mn;j
k :
Recalling that Dn
D;k ¼

PjIC
k j

j¼1m
n;j
k , we obtain the first part of the thesis.

Finally, since /n
i;D ¼

Pnc
k¼1kn

i;k#
1
k , we get
Xns

i¼1

/n
i;D ¼

Xns

i¼1

Xnc

k¼1

kn
i;k#

1
k ¼

Xnc

k¼1

#1
k ¼ 1: �
We can also show a consistency result of the interface fluxes. Let w : kn
i;k; k

n
i;k0
; . . . ; kn

i;kjIk j
! bkn;j

i;k be the map from the compo-
sition of the kth cell kn

i;k and from the compositions of its neighboring cells kn
i;kj
; j ¼ 1; . . . ; jIkj, to the jth interface composition

of the kth cell i.e.
bkn;j
i;k ¼ w kn

i;k; k
n
i;k1
; . . . ; kn

i;kjIk j

� �
:

Then we can show that
Proposition 7. If kn
i;kj
¼ kn

i;k; j ¼ 1; . . . ; jIkj, then
kn
i;k ¼ wðkn

i;k; k
n
i;k1
; . . . ; kn

i;kjIk j
Þ:
Proof. In this particular case we have /n;j
i;k ¼ kn

i;k; j ¼ 1; . . . ; jIkj and furthermore the optimal solution of (7) is dkn;j
i;k ¼ 0. Actu-

ally this solution minimizes the objective function and clearly satisfies the equality constraint: in fact, from Proposition 4, we
also know that dkn;j

i;k ¼ 0 is always in the feasible set. h

Then, from (8) and (9), we get that the numerical flux is consistent too.
Finally, we can also prove the following statement:

Proposition 8. Every discrete subdomain Xi,D, i = 1,. . .,ns, does not overlap with the others, i.e.
Xi;DðtÞ \Xj;DðtÞ ¼ ;; i ¼ 1; . . . ;ns; j ¼ 1; . . . ;ns; j – i; 8t > 0
and, given a subregion eX containing only two species identified by the indices i1, i2, we have
eXi1 ;D [ eXi2 ;D ¼ eX;

where eXi1 ;D ¼ Xi1 ;D \ eX and eXi2 ;D ¼ Xi2 ;D \ eX.
Proof. If ~X 2 Xi;DðtÞ, then /i;Dðt;~XÞ > 1
2, therefore from proposition (6) we get
Xns

j¼1; j – i

/i;Dðt;~XÞ <
1
2

and, since the level set functions are the piecewise linear interpolation of a positive function (i.e. the volume fractions ki,D),
we get /j;Dðt;~XÞ < 1

2 8j – i namely ~X R Xj;DðtÞ 8j – i. In the special case in which in a subregion eX there are only two species
we get, from the general case, that there are no overlaps between eXi1 ;D and eXi2 ;D. We have only to prove that
~X 2 eXi1 ;D or ~X 2 eXi2 ;D; or ~X 2 eXi1 ;D \ eXi2 ;D 8~X 2 eX:

We consider the three cases,
1. /i1 ;Dðt;~XÞ >

1
2, then ~X 2 eXi1 ;D;

2. /i1 ;Dðt;~XÞ <
1
2, so ~X 2 eXi2 ;D, in fact: /i2 ;Dðt;~XÞ ¼ 1� /i1 ;Dðt;~XÞ;

3. /i1 ;Dðt;~XÞ ¼
1
2, consequently the point ~X 2 eXi1 ;D \ eXi2 ;D.

Therefore, we obtain the thesis. h



A. Villa, L. Formaggia / Journal of Computational Physics 229 (2010) 5788–5802 5795
If more than two species are present in a subregion eX, then some void space could be generated. This can happen only
nearby the triple points, i.e., the points where more than two fluids meet. However, as we will see in Section 7, these void
spaces are confined to a cell size.

4. Convergence analysis of the one-dimensional case

In one-dimension a more detailed analysis is possible. Let TD be a uniformly Dx-spaced 1D mesh (see Fig. 4) with ele-
ments e0; . . . ; er�1; er ; erþ1; . . . ; ene and let us consider its dual mesh endowed with an ordered sequence of cells
s0; . . . ; sk�1; sk; skþ1; . . . ; snc . For the sake of simplicity let u be a constant, positive, velocity field (i.e., we are treating a null
divergence case) and let mn ¼ Dtn

Dx u be the Courant number. Notice that, in this case, all the Courant numbers are equivalent
to mn. Besides, every cell is associated to a mean composition kn

i;0; . . . ; kn
i;k�1; k

n
i;k; k

n
i;kþ1; . . . ; kn

i;nc
and has two boundary sub-cell

compositions bkn;j
i;k with j = 1, 2. Using a more explicit notation, for the 1D case, we can define the upwind sub-cell composi-

tions as bkn;þ
i;k and the downwind sub-cell compositions as bkn;�

i;k . Method (7) takes the form
Fig. 4.
its cells
knþ1
i;k ¼ kn

i;k � mðbkn;þ
i;k � bkn;þ

i;k�1Þbkn;þ
i;k ¼ kn

i;k þ dkn;þ
i;k :

8<: ð21Þ
While the minimization problem (13) becomes
min
dkn;þ

i;k

1
2

Pns

i¼1

1
2 kn

i;k � kn
i;kþ1

� �
þ dkn;þ

i;k

� �2
;

Pns

i¼1
dkn;þ

i;k ¼ 0;

dkn;þ
i;k;min 6 dkn;þ

i;k 6 dkn;þ
i;k;max;

8>>>>>><>>>>>>:
ð22Þ
where
dkn;þ
i;k;min ¼ �kn

i;k;

dkn;þ
i;k;max ¼min

ð1þDn
D;kÞ�mn jJk j
mn jJk j

kn
i;k;1� kn

i;k

� �
:

8<: ð23Þ
In the one-dimensional case it is possible, using the modified equation technique, to carry out a convergence analysis, see
[14]. Let Uiðt;~XÞ be the modified solution such that:
kn
i;k ¼ Uiðtn;~xkÞ 8n; i ¼ 1; . . . ; ns; k ¼ 1; . . . ;nc:
Moreover, we suppose that Ui 2 C2ðRþ �XÞ, then
kn
i;kþ1 ¼ Uiðtn; xkÞ þ @

@x Uiðtn; xkÞDxþ OðDx2Þ;
kn

i;k�1 ¼ Uiðtn; xkÞ � @
@x Uiðtn; xkÞDxþ OðDx2Þ;

knþ1
i;k ¼ Uiðtn; xkÞ þ @

@t Uiðtn; xkÞDt þ OðDt2Þ:

8>><>>: ð24Þ
For simplicity we also denote:
Un
i;k ¼ Uiðtn;~xkÞ;

@Un
i;k

@x
¼ @

@x
Uiðtn;~xkÞ;

@2Un
i;k

@x2 ¼
@2

@x2 Uiðtn;~xkÞ;
@Un

i;k

@t
¼ @

@t
Uiðtn;~xkÞ:
Let us now attend to the convergence analysis:

Proposition 9. The method defined by (22) is second order accurate in space and first order accurate in time.
Proof. We first show that
dkn;þ
i;k ¼

1
2
@Un

i;k

@x
Dx ð25Þ
The one-dimensional mesh. In the first part are depicted the mesh and the elements er, while in the second part the dual mesh is shown along with
sk.
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is the optimal solution of problem (22) for Dx ? 0. Substituting (24) in the first of (22) we get
1
2

Xns

i¼1

1
2

Un
i;k �

1
2

Un
i;k �

1
2
@Un

i;k

@x
Dxþ OðDx2Þ þ 1

2
@Un

i;k

@x
Dx

 !
¼ nsOðDx2Þ:
Therefore, the functional is minimized for Dx ? 0. It is also possible to prove that (25) satisfies the constraints of (22), in fact,
plugging (25) in the second equation of (22) we get
Xns

i¼1

dkn;þ
i;k ¼

Xns

i¼1

1
2
@Un

i;k

@x
Dx: ð26Þ
Then, summing the components of the Taylor expansion Un
i;kþ1 ¼ Un

i;k þ @
@x Un

i;kDxþ OðDx2Þ and thanks to (18), we get
Xns

i¼1

@Un
i;k

@x
Dx ¼ OðDx2Þ: ð27Þ
Plugging (27) into (26) we obtain that (25) satisfies the first constraint of (22). Then, substituting the Taylor expansions (24)
into (23), we get
dkn;þ
i;k;min ¼ �Un

i;k;

dkn;þ
i;k;max ¼min

ð1þDn
D;kÞ�mn jJk j
mn jJk j

Un
i;k;1� Un

i;k

� �
:

8<:

If Dx is small enough, the conditions, above mentioned for dkn;þ

i;k , are equivalent to
�
Un

i;k

Dx
6

1
2
@Un

i;k

@x
6min

ð1þ Dn
D;kÞ � mnjJkj
mnjJkj

Un
i;k

Dx
;
1� Un

i;k

Dx

 !
: ð28Þ
And for Dx ? 0 Eq. (28) becomes�1 6 @Un
i;k

@x 61 (which is clearly satisfied) except if Un
i;k ¼ 0 or Un

i;k ¼ 1. In that cases we have
@Un
i;k

@x
P 0;

@Un
i;k

@x
6 1; ð29Þ
respectively. Now we prove that (29) are satisfied. In fact, if Un
i;k ¼ 0, using the Taylor series, we have
Un
i;kþ1 ¼

@Un
i;k

@x
Dxþ OðDx2Þ:
Then, since Un
i;kþ1 ¼ kn

i;kþ1 P 0 and dividing by Dx, we get
@Un

i;k
@x þ OðDxÞP 0. Finally, from Dx ? 0 we get the first of (28). Using

a similar technique we can also prove the second of (28).
We can now estimate the convergence order of our method. Substituting (24) and (25) in the second of (21) we obtain
bkn;þ
i;k ¼ Un

i;k þ 1
2

@Un
i;k

@x Dx;bkn;þ
i;k�1 ¼ Un

i;k�1 þ 1
2

@
@x Un

i;k�1Dx

8<:

and combining them with the first of (21) we get
Dtn @Un
i;k

@t
þ OððDtnÞ2Þ ¼ �Dtn

Dx
u Un

i;k � Un
i;k�1 þ

1
2
@

@x
Un

i;kDx� 1
2
@

@x
Un

i;k�1Dx
� �

: ð30Þ
Using Taylor expansions we obtain
Un
i;k � Un

i;k�1 ¼ þ
@Un

i;k
@x Dx� 1

2

@2Un
i;k

@x Dx2 þ OðDx3Þ;
1
2

@Un
i;k

@x �
@Un

i;k�1
@x

� �
Dx ¼ 1

2

@Un
i;k

@x2 Dx2 þ OðDx3Þ:

8><>: ð31Þ
Plugging (31) into (30) and dividing by Dtn, we obtain
@Un
i;k

@t
þ u

@Un
i;k

@x
¼ OðDtnÞ þ OðDx2Þ 8n; i ¼ 1; . . . ; ns; k ¼ 1; . . . ;nc
and the proof follows. h
5. Numerical solution of the minimization problem

In this section, we study an efficient implementation of a numerical solver for problem (13) and we also give an estimate
of its computational cost. In particular, we use a gradient method slightly adapted in order to solve our particular problem.
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For every outflow boundary of every cell we pass to the solver the following inputs: ki, /i, DD, m and jJj. Here we drop the
indices k and j since we illustrate the algorithm applied to a generical cell and interface. We use the following scheme:

Algorithm 1. We compute the following quantities
dki;min ¼ �ki;

dki;max ¼min ð1þDDÞ�mjJj
mjJj ki;1� ki

� �(
ð32Þ
and we set dkð0Þi ¼ 0; i ¼ 1; . . . ;ns. Then, for m = 0, 1, . . . , we compute
NðmÞi ¼
0 if dkðmÞi ¼ dki;min and ðki � /i þ dkðmÞi Þ > 0;

0 if dkðmÞi ¼ dki;max and ðki � /i þ dkðmÞi Þ < 0;
1 otherwise;

8><>:
eGðmÞi ¼ ð/i � ki � dkðmÞi ÞN

ðmÞ
i ;

GðmÞi ¼ eGðmÞi �
Pns

j¼1
eGðmÞ

jPns
j¼1

NðmÞ
j

NðmÞi ;

a ¼
min 1; dk1;max�dkðmÞ1

GðmÞ1

; . . . ;
dkns ;max�dkðmÞns

GðmÞns

� �
if GðmÞi P 0;

min 1; dk1;min�dk1ðmÞ
GðmÞ

1

; . . . ;
dkns ;min�dkðmÞns

GðmÞns

� �
if GðmÞi < 0;

8>>><>>>:
dkðmþ1Þ

i ¼ aGðmÞi þ dkðmÞi :

8>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>:

ð33Þ
If GðmÞi ¼ 0; i ¼ 1; . . . ;ns, we stop the iterations.
The algorithm is, in fact, a projected gradient method applied to the given cost function. eGðmÞi is a one-sided projection of

the gradient on the boundary of the box [ki,min, ki,max] while GðmÞi accounts for the constraint
Pns

i¼1dkðmþ1Þ
i ¼ 0 by imposing that
Xns

i¼1

GðmÞi ¼ 0: ð34Þ
Finally, the coefficient a ensures that kðmþ1Þ
i belongs to the feasible set, i.e.
dki;min 6 aGðmÞi þ dkðmÞi 6 dki;max: ð35Þ
We now define FðmÞS ¼ fi 2 Rns : NðmÞi ¼ 1g as the set of the active components and, similarly, we define
NFðmÞS ¼ fi 2 Rns : NðmÞi ¼ 0g as the set of the constrained components.

We can show that this algorithm has some interesting properties:

Proposition 10. If dki,min 6 /i � ki 6 d ki,max, then Algorithm 1 terminates in two steps.
Proof. Since dkð0Þi ¼ 0; i ¼ 1; . . . ;ns, from (35) we have
if dki;min ¼ 0 then /i � ki P 0;
if dki;max ¼ 0 then /i � ki 6 0

�

and this implies that Nð0Þi ¼ 1; i ¼ 1; . . . ;ns. Consequently
Xns

i¼1

eGð0Þi ¼
Xns

i¼1

ð/i � kiÞ ¼ 0;
and
Gð0Þi ¼ eGð0Þi ¼ /i � ki:
Under this condition a = 1 and then
dkð1Þi ¼ aGð0Þi þ dkð0Þi ¼ /i � ki:
Then, at iteration m = 1, we have eGð1Þi ¼ Gð1Þi ¼ 0; i ¼ 1; . . . ;ns and, hence, we stop. h

We can also prove a more general stopping estimation:

Proposition 11. Algorithm 1 terminates in less than ns � jNFð0ÞS j þ 1 steps.
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Proof. First we show that ifi 2 NFðmÞS ; then i 2 NFðmþ1Þ
S . Indeed, from (33) we have that for all i 2 NFðmÞS
dkðmþ1Þ
i ¼ dkðmÞi :
Therefore, every step of Algorithm 1 can possibly add a further component to NFðmÞS . A maximum of ns � jNFð0ÞS j constraints
can be added. If all the components are constrained indeed, for an m 6 ns � jNFð0ÞS j þ 1, we have eGðmÞi ¼ GðmÞi ¼ 0 with
i = 1, . . .,ns and the iteration stops.

Conversely, if no constraint is added, the iteration stops. Indeed, if at m + 1 no constraint is added, then at step m a = 1 and
we have
dkðmþ1Þ
i ¼ GðmÞi þ dkðmÞi and Nðmþ1Þ

i ¼ NðmÞi ; i ¼ 1; . . . ; ns:
Moreover,
eGðmþ1Þ
i ¼ ð/i � ki � GðmÞi � dkðmÞi ÞN

ðmÞ
i ;
and, since from (33) ð/i � ki � dkðmÞi ÞN
ðmÞ
i ¼ eGðmÞi , we get
eGðmþ1Þ

i ¼ �GðmÞi Ni þ eGðmÞi ¼ �GðmÞi þ eGðmÞi : ð36Þ
Finally, using (36) in the definition of Gðmþ1Þ
i we get
Gðmþ1Þ
i ¼ eGðmÞi �

Pns
j¼1
eGðmÞjPns

j¼1NðmÞj

NðmÞi � GðmÞi þ
Pns

j¼1GðmÞjPns
j¼1NðmÞj

NðmÞi : ð37Þ
Since GðmÞj has a zero mean value, last term in (37) is zero. Moreover, since
eGðmÞi �
Pns

j¼1
eGðmÞjPns

j¼1NðmÞj

NðmÞi ¼ GðmÞi ;
we have that
Gðmþ1Þ
i ¼ 0; i ¼ 1; . . . ;ns ð38Þ
and the Algorithm terminates. h
Proposition 12. Algorithm 1 finds the optimal solution for (13)
Proof. We have already noted that the algorithm produces dkðmÞi which are always in the feasible region. Then, if we show
that the Algorithm finds a local minimum, from the convexity and differentiability of the objective function and of the con-
straints, it follows that the minimum solution is also the global one.

Let us now show that, if GðmÞi ¼ 0; i ¼ 1; . . . ;ns, then there is no improving direction. The allowed improving direction iseGðmÞi but, since GðmÞi ¼ 0; i ¼ 1; . . . ;ns, we have that eGðmÞi is orthogonal to the equality constraint of (13). Therefore there are
no improving directions allowed. h
6. Level set function reconstruction

We need also to build an algorithm to reconstruct the LS function. As we have dropped the usual definition of the distance
function, we need to define a proper algorithm for the reconstruction of the LS:

Algorithm 2. If there is an index �i such that:
kn
�i;k >

1
2

and kn
�i;kj

>
1
2
8kj 2 Ik; ð39Þ
then we set kn
�i;k ¼ 1 and kn

i;k ¼ 0 with i = 1, . . .,ns, i –�i. Otherwise, we maintain the nodal value kn
i;k. Then the level set function

is updated using (6).
This algorithm does not modify the LS function in all the elements where /n

i;D equals 1
2; in other words, the interface posi-

tion is not modified by this algorithm. Actually, if Eq. (39) is satisfied, from (6) we get sk 2Xi and therefore we can set kn
�i;k ¼ 1.

Since the evolution of the interfaces is independent of the set function (see [19,25]), this algorithm does not introduce any
error from the LS point of view. The Algorithm 2 does not guarantee the mass conservation in the sense that

Pnc
k¼1k

n
i;k is not

conserved. However, as it is shown in [24] and in Section 7, the mass discrepancy introduced by the reconstruction algorithm
is small.

Having concluded the definition of our method, we devote the next section to its analysis.
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7. Numerical results

7.1. Results

In this section, we introduce some numerical experiments which aim to illustrate the quality of the numerical scheme
proposed here. The first one is the convergence result in one-dimension. In this case, in order to accommodate the boundary
conditions, we have made a slight modification to the algorithm. In the description of this method we have, so far, neglected
the boundary conditions since we wanted to focus on the properties of the method which do not depend on them. We con-
sider a test case with a constant transport speed, i.e., v = 1 and the domain X is the interval [0,1]. The initial conditions are
k0

1;k ¼ 1; k0
2;k ¼ 0 8k, while kb

1ðtÞ ¼ 0; kb
2ðtÞ ¼ 1 8t 2 ½0; T� are the boundary conditions on the left (inflow) side. The problem
Fig. 5.
@ki

@t
þ u

@ki

@x
¼ 0
has the following analytical solution
k1ðt; xÞ ¼ Hðx� utÞ; k2ðt; xÞ ¼ 1� Hðx� utÞ:
Furthermore, it is possible to compute the L1 error on (0,T) � (0,1) defined as
EL1 ¼
Xns

i¼1

Z T

0

Z b

a
jkiðt; xÞ � ki;Dðt; xÞj:
In Fig. 5, we show the L1 error of the proposed method, compared with a high resolution Discontinuous Galerkin (DG) meth-
od with a MinMod Limiter (see [7]) and with the Godunov (G) method. Our method compares favorably with the DG method,
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One-dimensional convergence of the proposed method (Trac) compared with a Discontinuous Galerkin (DG) method and with the Godunov (G) one.

Fig. 6. Tracking of a square with (a) 10,000 degrees of freedom and cfl ¼ 1
10 and (b) 40,000 degrees of freedom.
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though the regularity of the solution limits the convergence rate. In fact, in this case, both our method and the DG one are
only first order accurate.

Let us now consider some classical examples in two-dimensions: in Fig. 6(a) we outline some results obtained with a
rotational field ~Vð~XÞ ¼ ½�X2 � 1; X1 � 1�, where X1, X2 are the cartesian components of~X. A square is filled with a fluid tagged
as A, the remaining space is filled with a fluid tagged as B; the square lower left corner coordinates are [0.8, 0.2] and the
upper right corner coordinates are [1.2, 0.6]. If we compare with the comprehensive benchmark analysis performed in
[9], we see that our results are intermediate, nevertheless our method has the possibility to track a large number of fluids
and has good conservation properties. In Fig. 7(a) the mass ratio between the volume occupied by the subdomains A and B
and the total volume is shown. As it can be seen, the volume is almost perfectly conserved. In Fig. 7(b) the same experiment
is performed applying the LS reconstruction Algorithm 2 at time steps 600, 1200 and 1800. The volume changes of subdo-
main A are very small.

As we have already pointed out, our method has the possibility to track a large number of fluids, according to what we
show in Fig. 8. Here we consider the foregoing case with the difference that we deal with three fluids: the first, tagged as A,
fills the inner square, the outer is filled with fluid B and the remaining space in the domain is filled with fluid C, see Fig. 8(a).
The coordinates of the lower left - upper right corners of the inner square are respectively [0.9, 0.3], [1.1, 0.5] while the outer
square corners coordinates are [0.8, 0.2], [1.2, 0.6]. As one can see from Fig. 8, the tracking performances are independent of
the number of the species being tracked.

In Fig. 9 we track three non-nested fluids, showing the coherence between the three tracked interfaces; the small rect-
angle filled with fluid C has the following corners coordinates: [0.75, 1], [1.25, 1.45]. The fluid B fills a more complex region,
that is the complementary part of the rectangle C in a rectangle with corner coordinates [0.5, 0.45], [1.5, 1.45]. The remaining
part of the computational domain is filled with the fluid A. In this test case, we show the performances of our method when
some triple points (in this case two) are present. The void spaces are very small and the interfaces between the fluids are
almost coherent.
Fig. 7. (a) The conservation of the mass fraction of species A (dashed line) and B (dash-dot line) plotted against the time steps. (b) The conservation of the
species A when a reconstruction algorithm is applied.

Fig. 8. Tracking of two nested squares with (a) 10,000 degrees of freedom and (b) 40,000 degrees of freedom. In this case three species are involved: the
inner square is filled with the species A, the outer with species B and the rest of the domain with species C.



Fig. 9. Multi-fluid tracking using 10,000 degrees of freedom. (a)–(c) are the computed interfaces after half a turn and (d)–(f) are the initial configurations.
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8. Conclusions

We have devised a coupled level set – volume tracking method that has been implemented in one, two and three-dimen-
sions, see [24]. It is computationally efficient and able to perform on general unstructured grids. It is currently used in geo-
physical simulations, where the velocity field is computed by solving a Stokes problem [15] and has demonstrated its
flexibility in treating complex simulations. Because of its local structure, it is easily parallelizable. In forthcoming works
we will show more details about applications to the multi-fluid geological simulations and we will investigate some higher
performance implementations of our code.
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